Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles by T. Liu et al.

T. Liu,^a* Y.-X. Wang,^b Z.-W. Wang,^a Z.-P. Xie^{a,c} and J. Y. Zhu^d

^aCollege of Engineering, Jinggangshan University, Jian 343009, People's Republic of China,
 ^bCollege of Mathematics and Physics, Jinggangshan University, Jian 343009, People's Republic of China,
 ^cDepartment of Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China, and
 ^dDepartment of Information Engineering, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
 Correspondence e-mail: taoliu07@126.com

Received 20 November 2009; accepted 15 December 2009

A series of 29 papers by Liu et al. are retracted.

As a result of problems with the data sets and incorrect atom assignments, 29 papers by Liu *et al.* are retracted. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
Tetrakis(pyrazine-кN)bis(thiocyanato-кN)manganese(II)	Liu & Xie (2007 <i>a</i>)	10.1107/S1600536807026852	EDUMAS
(Dihydroxyglyoxime-κ ² N,N')bis(1,10-phenanthroline-κ ² N,N')copper(II) dinitrate dihydrate	Liu, Wang, Wang & Xie (2007 <i>b</i>)	10.1107/S1600536807028255	EDUVAB
Tetrakis(pyrazine-κN)bis(thiocyanato-κN)zinc(II)	Liu & Xie (2007b)	10.1107/S1600536807028735	RIGQAA
Tetrakis(µ-2-pyridyloxyacetato)bis[(1,10-phenanthroline)(2-pyridyloxyacetato)- lanthanum(III)]	Liu, Wang, Wang & Xie (2007c)	10.1107/S1600536807030917	UDUMIQ
Polymeric KNOF ₂	Liu Wang, Wang & Xie (2007a)	10.1107/S1600536807027195	ICSD 240891
(Dihydroxyglyoxime-κ ² N,N')bis(1,10-phenanthroline-κ ² N,N')cobalt(II) dinitrate dihydrate	Liu, Wang, Wang & Xie (2007 <i>d</i>)	10.1107/S1600536807031224	WIHJED
Tetrakis(µ-2-pyridyloxyacetato)bis[(1,10-phenanthroline)(2-pyridyloxyacetato)- praseodymium(III)]	Liu, Wang, Wang & Xie (2007e)	10.1107/S1600536807032679	WIHQEK
Tetrakis[µ-(2-pyridyloxy)acetato-k ² O:O']bis{(1,10-phenanthroline-k ² N,N')- [(2-pyridyloxy)acetato-kO]neodymium(III)]	Liu, Wang, Wang & Xie (2007f)	10.1107/S1600536807035349	TIGDAP
(Dihydroxyglyoxime-κ ² N,N')bis(1,10-phenanthroline-κ ² N,N')manganese(II) dinitrate dihydrate	Liu, Wang, Wang & Xie (2007g)	10.1107/S1600536807035076	TIGDET
2-Amino-3,5-dinitrobenzoic acid-ammonia (1/1)	Liu & Zhu (2007j)	10.1107/S1600536807040068	KIKQAX
2-Hydroxy-3,5-dinitrobenzamide monohydrate	Liu & Zhu (2007k)	10.1107/S1600536807039712	KIKQEB
2-(1-Hydroxy-2-pyridyl)acetamide monohydrate	Liu & Zhu (2007 <i>l</i>)	10.1107/S1600536807040652	CIKQOD
$Bis(2,2'-bipyridine-\kappa N,N')bis(thiocyanato-\kappa N)iron(II)$	Liu & Zhu (2007a)	10.1107/S1600536807043486	XIFXOA
catena-Poly[hexakis(μ_2 -anilinoacetamide)bis(1,10-phenanthroline)disamarium(III]	Liu & Zhu (2007b)	10.1107/S1600536807045485	XILNAI
3-Hydroxy-2,4,6-trinitropyridine monohydrate	Liu & Zhu (2007m)	10.1107/S1600536807045230	PILNOO
catena-Poly[hexakis(μ_2 -anilinoacetamide)bis(1,10-phenanthroline)- dipraseodymium(III)]	Liu & Zhu (2007c)	10.1107/S1600536807047733	SILZET
catena-Poly[[tetra-µ-anilinoacetamidato-bis(1,10-phenanthroline)dicerium(III)]- di-µ-anilinoacetamidato]	Liu & Zhu (2007d)	10.1107/S1600536807050969	GIMZOS
Tetrakis(pyridine- κN)bis(thiocyanato- κN)chromium(II)	Liu & Zhu (2007e)	10.1107/S1600536807051756	WINFAB
2-Ammonio-3-carboxy-5-nitrobenzoate monohydrate	Liu & Zhu (2007 <i>n</i>)	10.1107/S1600536807048477	GINFEP
2-(Benzoylhydrazinocarbonyl)benzoic acid	Liu & Zhu (20070)	10.1107/S160053680705204X	TINZIA
Tetrakis(pyridine-κN)bis(thiocyanato-κN)vanadium(II)	Liu & Zhu (2007f)	10.1107/S1600536807054529	HIPZIQ
catena-Poly[[(nitrato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')nickel(II)]- μ -acetamido- $\kappa^2 O$:N]	Liu & Zhu (2007g)	10.1107/S1600536807056504	XIRGIP
catena-Poly[[(nitrato-κO)(1,10-phenanthroline-κ ² N,N')copper(II)]-μ-acetamido- κ ² O:N]	Liu & Zhu (2007h)	10.1107/S1600536807059077	HIQROP
catena-Poly[[(nitrato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')cobalt(II)]- μ -acetamidato- $\kappa^2 O$:N]	Liu & Zhu (2007 <i>i</i>)	10.1107/S1600536807060631	YIQMER
N'-Benzoyl-4-nitronicotinohydrazide	Liu & Zhu (2007 <i>p</i>)	10.1107/\$1600536807053068	CIPVON
N'-(3-Nitro-4-pyridylcarbonyl)pyridine-4-carbohydrazide	Liu & Zhu $(2007q)$	10.1107/S1600536807054876	RIRWEV

Table 1 (continued)

Title	Reference	DOI	Refcode
Ethylenediammonium sulfate	Liu & Zhu (2007r)	10.1107/S1600536807056280	ETDAMS03
Ethylenediammonium perchlorate	Liu & Zhu (2007s)	10.1107/S1600536807059909	HIRYEN
catena-Poly[[(nitrato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')manganese(II)]- μ -nitrato- $\kappa^2 O$:O']	Liu & Zhu (2008)	10.1107/S160053680706254X	MIRROV

References

- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007a). Acta Cryst. E63, i170.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007b). Acta Cryst. E63, m1887–m1888.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007c). Acta Cryst. E63, m2020–m2021.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007d). Acta Cryst. E63, m2027–m2028.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007e). Acta Cryst. E63, m2080–m2081.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007f). Acta Cryst. E63, m2196– m2197.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007g). Acta Cryst. E63, m2198–m2199.
- Liu, T. & Xie, Z.-P. (2007a). Acta Cryst. E63, m1820.
- Liu, T. & Xie, Z.-P. (2007b). Acta Cryst. E63, m1908.
- Liu, T. & Zhu, J. Y. (2007a). Acta Cryst. E63, m2506-m2507.

Liu, T. & Zhu, J.-Y. (2007b). Acta Cryst. E63, m2592-m2593. Liu, T. & Zhu, J. Y. (2007c). Acta Cryst. E63, m2659-m2660. Liu, T. & Zhu, J. Y. (2007d). Acta Cryst. E63, m2775-m2776. Liu, T. & Zhu, J. Y. (2007e). Acta Cryst. E63, m2809. Liu, T. & Zhu, J. Y. (2007f). Acta Cryst. E63, m2912. Liu, T. & Zhu, J.-Y. (2007g). Acta Cryst. E63, m2977-m2978. Liu, T. & Zhu, J. Y. (2007h). Acta Cryst. E63, m3108. Liu, T. & Zhu, J. Y. (2007i). Acta Cryst. E63, m3144. Liu, T. & Zhu, J.-Y. (2007j). Acta Cryst. E63, 03829. Liu, T. & Zhu, J. Y. (2007k). Acta Cryst. E63, o3830. Liu, T. & Zhu, J.-Y. (20071). Acta Cryst. E63, 03860. Liu, T. & Zhu, J. Y. (2007m). Acta Cryst. E63, 04112. Liu, T. & Zhu, J. Y. (2007n). Acta Cryst. E63, 04267. Liu, T. & Zhu, J. Y. (2007o). Acta Cryst. E63, 04441. Liu, T. & Zhu, J. Y. (2007p). Acta Cryst. E63, 04527. Liu, T. & Zhu, J. Y. (2007q). Acta Cryst. E63, 04574. Liu, T. & Zhu, J.-Y. (2007r). Acta Cryst. E63, 04660. Liu, T. & Zhu, J. Y. (2007s). Acta Cryst. E63, 04874. Liu, T. & Zhu, J. Y. (2008). Acta Cryst. E64, m28.

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(pyrazine- κN)bis(thiocyanato- κN)manganese(II)

T. Liu^a* and Z.-P. Xie^b

^aCollege of Engineering, Jinggangshan University, Jian 343009, People's Republic of China, and ^bDepartment of Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China Correspondence e-mail: taoliu07@163.com

Received 29 May 2007; accepted 1 June 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.007 Å; R factor = 0.050; wR factor = 0.159; data-to-parameter ratio = 16.9.

In the molecule of the title complex, $[Mn(NCS)_2(C_4H_4N_2)_4]$, the Mn^{II} atom is coordinated in a distorted octahedral arrangement by two N atoms of two SCN⁻ and four N atoms of four pyrazine ligands. A crystallographic twofold rotation axis passes through the Mn atom, and the N and *para*-N atoms of two *trans* pyrazine rings. In the crystal structure, the nonclassical hydrogen bonds and the weak π - π stacking interactions, involving the pyrazine rings of adjacent pyrazine ligands with a centroid–centroid distance of 3.3205 (4) Å, contribute to the formation of a supramolecular network structure.

Related literature

For related literature, see: Allen *et al.* (1987); Law *et al.* (1999); Li *et al.* (2005); Liu *et al.* (2004); Pan & Xu (2004); Pecoraro & Butler (1986); Wu *et al.* (2003).

Experimental

Crystal data $[Mn(NCS)_2(C_4H_4N_2)_4]$ $M_r = 491.47$ Monoclinic, C2/c a = 11.425 (5) Å b = 14.543 (4) Å

c = 15.022 (3) Å $\beta = 90.759$ (5)° V = 2495.7 (15) Å³ Z = 4Mo K α radiation $\mu = 0.72 \text{ mm}^{-1}$ T = 273 (2) K

Data collection

Bruker APEXII area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\rm min} = 0.836, T_{\rm max} = 0.952$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.159$ S = 1.092434 reflections

$0.26 \times 0.16 \times 0.07 \text{ mm}$

7912 measured reflections 2434 independent reflections 1675 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$

144 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.52 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$

Mn1-N1	2.130 (4)	Mn1-N3	2.239 (3)
Mn1-N2	2.100 (4)	Mn1-N4	2.137 (4)
N1-Mn1-N2	91,29 (9)	N2-Mn1-N3	90.26 (8)
N1-Mn1-N3	90.98 (14)	N2-Mn1-N4	180
N1-Mn1-N4	88.71 (9)	N3-Mn1-N4	89.74 (8)

Hydrogen-bond geometry (Å, °).

$H \cdot \cdot A$ $D - H$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $H 4 \cdot \cdot \cdot N1^{i}$ 0.93 2.55 3.109 (6) 119 $-H \cdot \cdot \cdot N1$ 0.93 2.58 3.176 (6) 122					
H4…N1 ⁱ 0.93 2.55 3.109 (6) 119 -H7…N1 0.93 2.58 3.176 (6) 122	$H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$H4 \cdots N1^{i}$ $-H7 \cdots N1$	0.93 0.93	2.55 2.58	3.109 (6) 3.176 (6)	119 122

Symmetry code: (i) -x, y, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Science and Technology Bureau of Jian, Jiangxi Province of China (grant No. 20052817).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2309).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Law, N. A., Caudle, M. T. & Pecoraro, V. L. (1999). Adv. Inorg. Chem. 46, 305–440.

Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.

Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.

Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.

Pecoraro, V. L. & Butler, W. M. (1986). Acta Cryst. C42, 1151-1154.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Göttingen, Germany. Siemens (1996). *APEX2, SAINT* and *SHELXTL*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.

Acta Cryst. (2007). E63, m1820 [doi:10.1107/S1600536807026852]

Tetrakis(pyrazine-KN)bis(thiocyanato-KN)manganese(II)

T. Liu and Z.-P. Xie

Comment

There are three manganese enzymes containing a mononuclear manganese site, *viz*. superoxide dismutase, peroxidase and dioxygenase, which participate in redox changes in the respective areas of biology (Law *et al.*, 1999). Carboxylatobridged complexes, such as pyridine, phenanthroline, quinoline and benzimidazole, are often employed to mimic the function and structure of these active sites, based on the knowledge that Mn centres in these enzymes are predominately coordinated by N,O donors from available amino acid side chains (Pecoraro & Butler, 1986; Wu *et al.*, 2003; Pan & Xu, 2004; Liu *et al.*, 2004; Li *et al.*, 2005). We herein report the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1) the ligand bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The two N atoms of two SCN⁻ and four N atoms of four pyrazine ligands are coordinated to the Mn atom, in a distorted octahedral arrangement (Table 1). A crystallographic twofold rotation axis passes through the Mn atom, and the N and *para*-N atoms of two *trans* pyrazine rings. The planar pyrazine rings I (N3/N6/C4–C7), II (N2/N7/C2A/C3A/C2–C3) and III (N4/N5/C8A/C9A/C8–C9) are nearly perpendicular to each other, with dihedral angles of I/II = 87.7 (2), I/III = 109.2 (6) and II/III = 85.9 (7)°.

In the crystal structure, the non-classical hydrogen bonds and the weak π - π stacking interactions, involving the pyrazine rings of adjacent pyrazine ligands with centroid-centroid distance of 3.3205 (4) Å [symmetry code: 1 - x, 2 - y, 1 - z], cause to the formation of a supramolecular network structure (Fig. 2).

Experimental

Crystals of the title compound were synthesized using hydrothermal method in a Teflon-lined Parr bomb (23 ml), which was then sealed. Manganese(II) chloride tetrahydrate (39.6 mg, 0.2 mmol), potassium thiocyanate (38.9 mg, 0.4 mmol), pyrazine (1.5 ml), and distilled water (2 g) were placed into the bomb and sealed. The bomb was heated under autogenous pressure for 6 d at 413 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small yellow crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code (A): -x, y, 3/2-z].

Tetrakis(pyrazine-κN)bis(thiocyanato-κN)manganese(II)

Fig. 2. A packing dia	agram for (I).
Tetrakis(pyrazine- κN)bis(thiocyanato- κN)ma	nganese(II)
Crystal data	
$[Mn(NCS)_2(C_4H_4N_2)_4]$	$F_{000} = 1004$
$M_r = 491.47$	$D_{\rm x} = 1.308 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo K α radiation A = 0.71073 Å
Hall symbol: -C 2yc	Cell parameters from 2231 reflections
a = 11.425 (5) Å	$\theta = 2.3 - 23.8^{\circ}$
b = 14.543 (4) Å	$\mu = 0.72 \text{ mm}^{-1}$
c = 15.022 (3) Å	T = 273 (2) K
$\beta = 90.759 (5)^{\circ}$	Block, yellow
$V = 2495.7 (15) \text{ Å}^3$	$0.26 \times 0.16 \times 0.07 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII area-detector diffractometer	2434 independent reflections
Radiation source: fine-focus sealed tube	1675 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 273(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 13$
$T_{\min} = 0.836, T_{\max} = 0.952$	$k = -17 \rightarrow 17$
7912 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.050$

 $wR(F^2) = 0.159$

S = 1.09

2434 reflections

144 parameters

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.1074P)^2 + 0.9725P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.52 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0113 (16)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates a	and	isotrop	oic or	equivalen	it isotropic	displacement	parameters	$(Å^2$?)
								1	/

	x	y	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.0000	0.35963 (4)	0.7500	0.0486 (3)
S1	-0.36253 (15)	0.36697 (11)	0.93412 (13)	0.1233 (6)
N1	-0.1575 (3)	0.3629 (2)	0.8242 (3)	0.0787 (10)
N2	0.0000	0.2153 (3)	0.7500	0.0686 (11)
N3	0.1076(3)	0.3603 (2)	0.8756 (2)	0.0694 (8)
N4	0.0000	0.5066 (3)	0.7500	0.0700 (11)
N5	0.0000	0.6957 (5)	0.7500	0.150 (3)
N6	0.2516 (6)	0.3887 (4)	1.0292 (5)	0.142 (2)
N7	0.0000	0.0280 (5)	0.7500	0.131 (2)
C1	-0.2437 (3)	0.3646 (2)	0.8699 (3)	0.0663 (10)
C2	-0.0418 (4)	0.1680 (3)	0.8208 (3)	0.0785 (11)
H2	-0.0706	0.2007	0.8691	0.094*
C3	-0.0430 (5)	0.0761 (3)	0.8235 (3)	0.0957 (14)
H3	-0.0716	0.0449	0.8727	0.115*
C4	0.2251 (4)	0.3423 (3)	0.8760 (3)	0.0892 (13)
H4	0.2572	0.3205	0.8234	0.107*

supplementary materials

C5	0.3009 (5)	0.3539 (4)	0.9491 (5)	0.1116 (19)
Н5	0.3801	0.3396	0.9456	0.134*
C6	0.1327 (7)	0.4051 (5)	1.0275 (4)	0.140 (3)
Н6	0.0974	0.4267	1.0788	0.168*
C7	0.0637 (5)	0.3904 (4)	0.9517 (3)	0.1084 (17)
H7	-0.0162	0.4022	0.9545	0.130*
C8	0.0981 (4)	0.5541 (3)	0.7764 (3)	0.0853 (12)
H8	0.1652	0.5214	0.7923	0.102*
C9	0.1006 (5)	0.6463 (3)	0.7802 (5)	0.112 (2)
Н9	0.1663	0.6771	0.8020	0.134*

Atomic displa	cement parameter	rs ($Å^2$)				
	U^{11}	U^{22}	U^{33}	U^{12}	U ¹³	U ²³
Mn1	0.0436 (5)	0.0510 (5)	0.0515 (5)	0.000	0.0112 (3)	0.000
S1	0.0995 (11)	0.1354 (13)	0.1366 (14)	0.0019 (8)	0.0649 (10)	0.0009 (9)
N1	0.071 (2)	0.086 (3)	0.079 (2)	0.0017 (16)	0.0187 (17)	-0.0001 (17)
N2	0.074 (3)	0.065 (3)	0.067 (3)	0.000	0.005 (2)	0.000
N3	0.068 (2)	0.0669 (19)	0.074 (2)	0.0020 (15)	0.0040 (15)	-0.0021 (15)
N4	0.064 (3)	0.063 (3)	0.084 (3)	0.000	0.004 (2)	0.000
N5	0.142 (7)	0.086 (5)	0.220 (9)	0.000	-0.020 (6)	0.000
N6	0.148 (5)	0.141 (4)	0.134 (5)	0.002 (4)	-0.031 (4)	-0.020 (4)
N7	0.165 (7)	0.088 (4)	0.140 (6)	0.000	-0.015 (5)	0.000
C1	0.064 (2)	0.065 (2)	0.070 (2)	0.0039 (17)	0.0125 (17)	-0.0001 (17)
C2	0.087 (3)	0.070 (2)	0.078 (3)	-0.006 (2)	0.005 (2)	0.009 (2)
C3	0.127 (4)	0.071 (3)	0.089 (3)	-0.007 (3)	0.001 (3)	0.008 (2)
C4	0.071 (3)	0.107 (4)	0.090 (3)	0.012 (2)	0.001 (2)	0.015 (2)
C5	0.076 (3)	0.130 (5)	0.127 (5)	-0.001 (3)	-0.019 (3)	0.026 (4)
C6	0.129 (5)	0.188 (7)	0.101 (4)	0.048 (5)	-0.033 (4)	-0.042 (4)
C7	0.094 (3)	0.154 (5)	0.078 (3)	0.028 (3)	-0.008 (2)	-0.031 (3)
C8	0.074 (3)	0.071 (3)	0.111 (3)	-0.009 (2)	-0.003 (2)	0.005 (2)
C9	0.094 (4)	0.070 (3)	0.171 (6)	-0.010 (3)	-0.025 (4)	0.000 (3)
Geometric pa	rameters (Å, °)					
Mn1—N1		2.130 (4)	N6	C6	1.3	78 (8)
Mn1—N2		2.100 (4)	N6—	C5	1.42	28 (9)
Mn1—N3	*	2.239 (3)	N7	C3 ⁱ	1.40	01 (6)
Mn1—N4		2.137 (4)	N7	C3	1.40	01 (6)
Mn1—N1 ⁱ		2.130 (4)	C2—	C3	1.33	38 (6)
· ·i		0 0 0 0 (0)		110	0.07	200

Mn1—N3ⁱ 2.239 (3) С2—Н2 0.9300 S1-C1 1.676 (4) С3—Н3 0.9300 N1-C1 1.209 (6) C4—C5 1.400(7) N2—C2ⁱ 1.359 (5) C4—H4 0.9300 N2---C2 1.359 (5) С5—Н5 0.9300 N3—C7 1.328 (6) C6--C7 1.393 (7) N3-C4 1.368 (5) С6—Н6 0.9300 N4-C8 1.371 (5) С7—Н7 0.9300

N4—C8 ⁱ	1.371 (5)	С8—С9	1	.342 (6)
N5—C9	1.424 (6)	С8—Н8	0	.9300
N5—C9 ⁱ	1.424 (6)	С9—Н9	0	.9300
N1—Mn1—N2	91.29 (9)	C3 ⁱ —N7—C3	1	20.2 (6)
N1—Mn1—N3	90.98 (14)	N1-C1-S1	1	79.5 (4)
N1—Mn1—N4	88.71 (9)	C3—C2—N2	1	22.2 (4)
N2—Mn1—N3	90.26 (8)	С3—С2—Н2	1	18.9
N2—Mn1—N4	180.000 (1)	N2—C2—H2	1	18.9
N3—Mn1—N4	89.74 (8)	C2—C3—N7	1	18.1 (5)
N2—Mn1—N1 ⁱ	91.29 (9)	С2—С3—Н3	1	21.0
N1 ⁱ —Mn1—N1	177.42 (19)	N7—C3—H3	1	21.0
N1 ⁱ —Mn1—N4	88.71 (9)	N3—C4—C5	1	25.2 (5)
N1 ⁱ —Mn1—N3	89.01 (14)	N3—C4—H4		17.4
N2—Mn1—N3 ⁱ	90.26 (8)	С5—С4—Н4		17.4
N1 ⁱ —Mn1—N3 ⁱ	90.98 (14)	C4—C5—N6		17.2 (5)
N1—Mn1—N3 ⁱ	89.01 (14)	С4—С5—Н5	1	21.4
N4—Mn1—N3 ⁱ	89.74 (8)	N6—C5—H5	1	21.4
N3—Mn1—N3 ⁱ	179.48 (15)	N6—C6—C7	1	22.4 (6)
C1—N1—Mn1	176.9 (4)	N6-C6-H6	1	18.8
C2 ⁱ —N2—C2	119.2 (5)	С7—С6—Н6	1	18.8
C2 ⁱ —N2—Mn1	120.4 (3)	N3-C7-C6	1	22.5 (5)
C2—N2—Mn1	120.4 (3)	N3	1	18.8
C7—N3—C4	116.3 (4)	С6—С7—Н7	1	18.8
C7—N3—Mn1	121.1 (3)	C9—C8—N4	1	22.2 (5)
C4—N3—Mn1	122.0 (3)	С9—С8—Н8	1	18.9
C8—N4—C8 ⁱ	119.4 (5)	N4—C8—H8	1	18.9
C8—N4—Mn1	120.3 (2)	C8—C9—N5	1	18.3 (5)
C8 ⁱ —N4—Mn1	120.3 (2)	С8—С9—Н9	1	20.9
C9—N5—C9 ⁱ	119.4 (6)	N5—C9—H9	1	20.9
C6—N6—C5	116.5 (5)			
Symmetry codes: (i) $-x, y, -z+3/2$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A
C4— $H4$ ···N1 ⁱ	0.93	2.55	3.109 (6)	119
C7—H7…N1	0.93	2.58	3.176 (6)	122
Symmetry codes: (i) $-x$, y , $-z+3/2$.				

